Skip to main content

Tag: Chen

Wistar Scientists Explore Importance of Microglia Marker in Metastasized Brain Tumor Microenvironment

PRESS RELEASE

The Chen lab examines microglia activation in metastatic brain tumors

PHILADELPHIA—(Mar. 28, 2024)— The Wistar Institute’s Qing Chen, M.D., Ph.D., assistant professor in the Immunology, Microenvironment and Metastasis Program at the Ellen and Ronald Caplan Cancer Center, has discovered certain immune cells in the brain called microglia have reduced expression of TMEM119 in cases where cancer has metastasized to the brain. The Chen lab’s finding provides an opportunity to more accurately study how brain microglia behave in metastatic contexts, which is key for researching possible therapies. The new paper, “Tmem119 expression is downregulated in a subset of brain metastasis-associated microglia,” was published in the journal BMC Neuroscience.

“This research provides a new avenue and crucial first step in understanding how these immune cells interact with cancer, and we look forward to future mechanistic studies of these cases,” said Dr. Chen.

When cancer cells metastasize into the brain, the nervous system’s immune cells, called microglia, become activated. Immune cells are a very important area of study for cancer researchers because understanding how they do (or do not) function against cancer allows scientists to develop strategies to improve the immune system’s ability to fight cancer.

However, studying the mechanistic role of microglia in metastatic cancers in the brain has been difficult because, by most measures, microglia are difficult to distinguish from another set of immune cells — myeloid-derived immune cells — that also enter the brain in pathological conditions.

Dr. Chen and her lab study how cancer cells interact with brain stromal cells, and wanted to investigate TMEM119 — a cell surface marker which has been recently identified to express specifically on microglia. They aimed to investigate the TMEM119 expression in the microglia from brain metastasis tumors.

They analyzed a preclinical model of breast cancer that metastasizes to the brain, and by assessing the gene expression of the immune cells, her team was able to confirm that only brain microglia, but not infiltrated myeloid cells, express TMEM119. Moreover, metastasis-activated microglia have an identifiable reduction in TMEM119 expression.

Co-authors: Weili Ma, Jack Oswald, Angela Rios Angulo, and Qing Chen of The Wistar Institute.

Work supported by: National Institutes of Health & National Cancer Institute grants T32CA009171, R01CA241490, and Specialized Program of Research Excellence P50 CA261608.

Publication information: “Tmem119 expression is downregulated in a subset of brain metastasis-associated microglia,” from BMC Neuroscience.

For a printer-friendly version of this release, please click here.

ABOUT THE WISTAR INSTITUTE:

The  Wistar Institute, the first independent nonprofit biomedical research institute in the United States, marshals the talents of an international team of outstanding scientists through a highly enabled culture of biomedical collaboration and innovation, to solve some of the world’s most challenging and important problems in the field of cancer, immunology, and infectious disease, and produce groundbreaking advances in world health. Consistent with a pioneering legacy of leadership is not-for-profit biomedical research and a track record of life-saving contributions in immunology and cell biology, Wistar scientists pursue novel and courageous research research paths to life science discovery, and to accelerate the impact of early-stage discoveries by shortening the path from bench to bedside. wistar.org


Continue reading

Wistar Institute Study Gives New Insight into How Cancer Metastasizes to the Brain

PHILADELPHIA — (June 20, 2023) — When cancer that starts in the body metastasizes to the brain, it is almost always lethal, in part because so few treatment options exist. Now a new study by Wistar scientists published in Nature Communications shows that a type of brain cell called astrocytes plays an important role in promoting brain metastasis by recruiting a specific subpopulation of immune cells.

The finding could be a first step toward identifying potential targets for therapies to fight cancers that metastasize to the brain. This would fill a significant unmet need, said researcher Qing Chen, M.D., Ph.D., assistant professor, Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center at The Wistar Institute. because treatment options for brain metastasis have lagged behind, even as advances in other cancer therapies have made enormous strides, making those cancers much more treatable.

“It can be devastating for patients and their families, because they go through so much treatment, they survive the breast cancer, they all celebrate, and then it shows up in the brain,” leading to a terminal diagnosis, she said.

Several types of cancer are known for metastasizing to the brain, including breast, lung, carcinoma, and melanoma. One reason conventional treatments do not work on these cancers after they reach the brain is because the brain is such a different environment from the rest of the body, with unique brain cells (neuron and glia cells) providing different support to the metastatic cancer cells.

For the study, researchers wanted to better understand the cancer-brain interactions that trigger metastasis when cancer cells enter the brain. They focused on astrocytes, a type of star-shaped cell that helps form connections between neurons.

Using brain metastasis mouse models, researchers showed that when the astrocytes were exposed to cancer cells, they began to activate type I interferon pathways. Type I interferon, the cytokines associated with regulating inflammation, have been shown to have to anti-tumor effects. However, more and more evidence suggest controversial effects of type I IFN signaling in chronic inflammation and cancer.

“That was an exciting surprise,” Chen said, adding that it was the first time the type I interferon response had been implicated to promote brain metastasis.

They found that the interferon response was being activated at a low level but for a prolonged period of time. This could explain why a process that is normally associated with helping the immune system was actually causing harm by supporting tumor growth. Previous studies have found that low-level, chronic interferon response can cause negative health outcomes, she noted.

When they took a closer look, researchers found that the interferon signaling was activating production of a chemokine called CCL2, which in turn attracted harmful immune cells called monocytic myeloid cells. These cells promote tumor growth.

Researchers then studied mice that were genetically altered to abolish the type I interferon activation in astrocyte cells. They found that mice that were missing this pathway had fewer brain metastases.

“That shows the type I interferon response in astrocyte cells actually promotes metastasis,” Chen said.

She noted researchers found a similar result with both melanoma and breast cancer cells, showing that the process – and potential therapeutic targets – occur across different cancer types.

Chen hoped the findings encouraged more researchers to study the interactions that lead cancers to metastasize in the brain.

“It’s an urgent need to have more people pay attention to this problem, and hopefully we’ll have more basic researchers and clinicians participate in future studies, as well as more resources,” she said.

Next, Chen’s team is applying for a federal grant from the National Cancer Institute (NCI) for a follow up study to better understand the mechanism and timing of how astrocytes and the interferon response promote brain metastasis, with a goal of identifying the best therapeutic window for treating and stopping this process.

Co-authors: Wili Ma, Maria Cecilia Oliveira-Nunes, Andrew Kossenkov, and James Hayden of Wistar, Ke Xu of Boston University School of Medicine, Benjamin C. Reiner and Richard C. Crist of the University of Pennsylvania.

Work supported by: Susan G. Komen, V Foundation for Cancer Research, and the NIH/NCI.

Publication information: Type 1 interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment Nature Communications, 2023. Online publication.

###

The Wistar Institute, the first independent, nonprofit biomedical research institute in the United States, marshals the talents of an international team of outstanding scientists through a culture of biomedical collaboration and innovation. Wistar scientists are focused on solving some of the world’s most challenging and important problems in the field of cancer, infectious disease, and immunology. Wistar has been producing groundbreaking advances in world health for more than a century. Consistent with its legacy of leadership in biomedical research and a track record of life-saving contributions in immunology and cell biology, Wistar scientists’ early-stage discoveries shorten the path from bench to bedside. wistar.org.